
QIn dBase and Visual Basic I
have functions to trim

spaces from a string (TRIM$ for
example). Where I can find these
functions in Delphi?

AI’m afraid you won’t find
them, because they aren’t

there! However, you can easily
write them yourself, or just use the
TrimStr unit shown in Listing 1
instead (put it in the uses clause of
your units).

QHow do I bring up a secon-
dary form in response to an

action in my application’s primary
form? I want to design several
forms as secondary forms and then
execute them in response to differ-
ent actions in the primary form. I
also want to move back and forth
between the forms when they are
on the screen.

The Delphi
CLINIC

Edited by Bob Swart
Bring your problems to our panel of experts!

If there’s something puzzling you about an
aspect of Delphi, just email the Delphi Clinic

Editor, Bob Swart, at Compuserve 100434,2072
or write or fax us at The Delphi Magazine

AAll you need to do is hide the
primary form (Form1.Hide)

and show the second one
(Form2.Show). Note that you must
include Unit2 in the uses clause of
Unit1. If you want to get rid of a
form, just call Close (for example
Form1.Close).

QI’m using the Borland Delphi
Menu Designer to create the

menu for my application. Each new
menu item’s name can be typed in
the caption of the TMenuItem, so this
is no problem. I don’t seem to be
able to add an old fashioned menu
item separator line (like in
Resource Workshop).

AIf you type a single ’-’ (dash)
as the caption of a menu

item, then the menu item will
become a separator. It looks a bit
awkward in the Menu Designer

(since the separator will take the
same space as a normal menu
item), but at run-time it will be fine!

QI’m using a StringGrid com-
ponent and I want to resize

the columns. No problem occurs
when I’m resizing the columns 2, 3,
4 and so on, until I want to resize
the first column – it doesn’t seem
to be possible at all!

ASet the FixedCols attribute of
the StringGrid to 0. Now you

can resize the first column. When
this is done, reset FixedCols to 1.

QHow do I close a form when
opening? The main form of

my application checks a user login
first of all. It creates and shows a
modal form with Password and
User ID TEdit controls. If the Cancel

unit TrimStr;
{$B-}
{ Purpose: routines for removing leading/trailing spaces
 from strings and to take parts of left/right of string.
 LTrim() - Remove leading spaces from string
 RTrim() - Remove trailing spaces from string
 Trim() - Remove leading & trailing spaces
 RightStr() - Extract substring from right of string
 LeftStr() - Extract substring from left of string
 MidStr() - Extract substring from within string }

interface

Const Space = #$20;
function LTrim(Const Str: String): String;
function RTrim(Str: String): String;
function Trim(Str: String): String;
function RightStr(Const Str: String; Size: Word):
 String;
function LeftStr(Const Str: String; Size: Word): String;
function MidStr(Const Str: String; Size: Word): String;

implementation

function LTrim(Const Str: String): String;
var len: Byte absolute Str;
 i: Integer;
begin
 i := 1;
 while (i <= len) and (Str[i] = Space) do Inc(i);
 LTrim := Copy(Str,i,len)
end {LTrim};

function RTrim(Str: String): String;
var len: Byte absolute Str;
begin
 while (Str[len] = Space) do Dec(len);
 RTrim := Str
end {RTrim};

function Trim(Str: String): String;
begin
 Trim := LTrim(RTrim(Str))
end {Trim};

function RightStr(Const Str: String; Size: Word):
String;
var len: Byte absolute Str;
begin
 if Size > len then Size := len;
 RightStr := Copy(Str,len-Size+1,Size)
end {RightStr};

function LeftStr(Const Str: String; Size: Word): String;
begin
 LeftStr := Copy(Str,1,Size)
end {LeftStr};

function MidStr(Const Str: String; Size: Word): String;
var len: Byte absolute Str;
begin
 if Size > len then Size := len;
 MidStr := Copy(Str,((len - Size) div 2)+1,Size)
end {MidStr};
end.

➤ Listing 1

34 The Delphi Magazine Issue 2

button is pressed (ShowModal
returns mrCancel) I want to prevent
the main form from opening. The
activation of the login dialog is in
the FormCreate method of the main
form:

procedure TFormMain.FormCreate(
 ...)
var
 LoginForm : TUserLogin;
begin
 Application.CreateForm(
 TUserLogin, LoginForm);
 if LoginForm.ShowModal =
 mrCancel then begin
 LoginForm.Free;
 Close;
 end;
end {FormCreate};

The Close call has no effect!

ARather than putting this
logic into FormCreate, instead

put it into the main form’s OnCreate
handler. Also, instead of calling
Close use Application.Terminate;

QHow can I remove the scroll
bars from a TDBGrid? There’s

no scroll bars property to set in the
Object Inspector.

AIf you try to remove the scoll
bars from a standard TDBGrid

object, you are guaranteed only
partial success. There’s a couple of
reasons for this. Firstly, the
ScrollBars property, which allows
you to conveniently turn on or off
either or both of the horizontal and
vertical scroll bars in TMemo,
TDBMemo, TOutline and TDrawGrid
components is a protected data
member in a TDBGrid. This of course
restricts anyone from using it
unless they are deriving a new
component from TDBGrid.

The second problem would
show itself if you tried to achieve
the goal by publishing the
ScrollBars property in a descen-
dant TDBGrid (as shown in Listing 2,
in the TNewDBGrid component).
Figure 1 shows the result of install-
ing such a descendant component
in the component palette, using it
in an application and setting the
ScrollBars property to ssNone. The

vertical scrollbar doesn’t disap-
pear when requested, although the
horizontal one does as we ask.

The problem is a bug in the
DBGRIDS unit in the VCL. If you
watch the vertical scrollbar in a
grid carefully during use, you’ll see
that it doesn’t work as scrollbars
normally do. The thumb bar is
either at the top, bang in the cen-
tre, or right down at the bottom.
The grid doesn’t find out how many
records are in the table with each
movement (for efficiency) and so
can’t do proper gradations. This
abnormal (for want of a better
word) scrollbar behaviour is imple-
mented in a non-virtual method of
TCustomDBGrid, the ancestor of
TDBGrid. It is called from a number
of other TCustomDBGrid methods,
and forces a particular thumb bar
position of the vertical scroll bar.

Unfortunately, forcing a thumb
bar position causes the scroll bar
to display, whether or not it is
wanted, and the code does not
check the ScrollBars property. My
suggested fix is to add a check for
the ScrollBars property into the
source code and recompile it. Of
course this requires the VCL

source, so you’ll need the
Client/Server version of Delphi, or
you’ll need to get the VCL Source
Code Disk add-on. If you don’t have
the source you will be stuck with
this approach. [Note: make sure
you install the Delphi patch files
from the disk with this issue BEFORE
you make this patch to DBDRIDS, or
the Borland patch files won’t work!
Editor].

A Borland R&D guy confirmed
this would be the right approach,
although he implied a complete

➤ Figure 2 This time complete success!

➤ Figure 1 Removing scrollbars from a TDBGrid: partial success

unit NewGrid;
interface
uses
 Classes, Grids, StdCtrls,
 DBGrids;
type
 TNewDBGrid = class(TDBGrid)
 published
 property ScrollBars;
 end;
procedure Register;
implementation
procedure Register;
begin
 RegisterComponents(
 ’Data Controls’,
 [TNewDBGrid]);
end;
end.

➤ Listing 2

July 1995 The Delphi Magazine 35

solution probably requires more
than just this one test. With that
warning in mind, here is my
solution (assuming Delphi is
installed into C:\DELPHI):

1. Make a new project in Delphi and
drop a DBGrid onto the form.
2. Choose File | Save Project, and
cancel the Save Unit dialog that
comes up (this adds the DBGrids
unit to the uses list of the unit that
sits behind your form).
3. Select Options | Project, go to
the Directories/Conditionals tab.
4. Add C:\DELPHI\SOURCE\VCL to the
Search Path.
5. Press the OK button.
6. Scroll to the top of the unit file in
the project and click on DBGrids in
the uses statement.
7. Right-click on the code window
and choose Open File at Cursor
(this uses that path we added to
find the DBGRIDS.PAS VCL source file
and load it into the editor).
8. Use Search | Find to locate the
TCustomDBGrid.UpdateScrollBar im-
plementation around line 811.
9. Immediately after the begin,
insert the line:

if ScrollBars in
 [ssVertical, ssBoth] then

10. Close and save DBGRIDS.PAS.
11. Ensure that Options | Environ-
ment | Preferences | Autosave Edi-
tor files is unchecked (allowing
you to compile this temporary
project without saving it first) and
compile using Compile | Compile,

causing this VCL module, amongst
others, to get recompiled.
12. Using File Manager, rename
file C:\DELPHI\LIB\DBGRIDS.DCU to
C:\DELPHI\LIB\DBGRIDS.SAV, copy
C:\DELPHI\SOURCE\VCL\DBGRIDS.DCU
to C:\DELPHI\LIB\DBGRIDS.DCU (this
replaces the original compiled
version of DBGrids that Delphi
uses when making the component
library with our new version).

13. Back in Delphi choose
Options | Rebuild Library to
generate a patched component
library.

Having gone through the rigma-
role of modifying the component
library source code and regenerat-
ing the library, the TNewDBGrid
mentioned earlier now works as
expected, and the ScrollBars
property works. Figure2 shows a
grid with no scrollbars at all.

QHow do I “shell” out with a
call to another executable

that I want to call, which returns
the user to my Delphi application
when exited?

AWe can modify the old
WinExecAndWait function, and

replace the while PeekMessage loop
with Application.HandleMessage, as
shown in Listing 3. Using this
function, we can even write a little
application launcher that will hide
itself when executing (and waiting
for) another application. An exam-
ple is shown in Figure 3, the code
is in Listing 4 (the full application
source is on the free disk with this
issue of course).

Thanks to Arjan Jensen for the
menu separator advice, ‘Buggy’
Bazz Zuidwijk for the TStringGrid
hint and Brian Long for his
TDBGrid fix. Plus, of course, thanks
to all those who submitted
queries: keep them coming!

unit Unit1;
interface
uses
 SysUtils, WinTypes, WinProcs,
 Forms, Classes, Controls, StdCtrls;
type
 TForm1 = class(TForm)
 Edit1: TEdit;
 Exec: TButton;
 ExecWait: TButton;
 procedure ExecClick(Sender: TObject);
 procedure ExecWaitClick(Sender: TObject);
 end;
var
 Form1: TForm1;
implementation
uses ExecWait;
{$R *.DFM}

procedure TForm1.ExecClick(Sender: TObject);
var Str: String;
 Len : Byte absolute Str;
begin
 Str := Edit1.Text;
 Str[len+1] := #0;
 WinExec(@Str[1], SW_SHOW);
end;
procedure TForm1.ExecWaitClick(Sender: TObject);
var Str: String;
 Len : Byte absolute Str;
begin
 Form1.Hide;
 Str := Edit1.Text;
 Str[len+1] := #0;
 WinExecAndWait(@Str[1], SW_SHOW);
 Form1.Show;
end;
end.

➤ Listing 4

function WinExecAndWait(CmdLine: PChar; CmdShow: Word): Word;
var InstID: THandle;
 Terminate: Boolean;
begin
 InstID := WinExec(CmdLine, CmdShow);
 if InstID < 32 then
 WinExecAndWait := InstID
 else
 repeat
 Application.HandleMessage(Terminate);
 until (GetModuleUsage(InstID) = 0) or Terminate;
end;

➤ Listing 3

➤ Figure 3
Example application launcher

36 The Delphi Magazine Issue 2

